skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brown, Gregory P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dehydration is considered a physiological challenge, and many organisms live in environments that undergo periods of reduced water availability that can lead to dehydration. Recent studies have found a positive relationship between dehydration and innate immune function in animals adapted to xeric or semixeric environments. To explore the generality of this relationship, we examined the impact of dehydration on innate immune performance in water pythons (Liasis fuscus), a semiaquatic snake from the wet‐dry tropics of Australia. We collected blood samples from male and female water pythons held in the laboratory without food and water for 4 weeks. We also collected blood from free‐ranging snakes throughout the Austral dry‐season. We evaluated plasma osmolality and innate immune function (agglutination, lysis, and bacterial‐killing ability) and found that increased osmolality, whether manipulated in the laboratory or as a result of natural water limitation, resulted in enhanced aspects of innate immune performance. Counter‐intuitively, snakes in the wild became more hydrated as the dry season progressed, suggesting the dehydrated snakes move to water sources periodically to rehydrate. Comparing our data with those from previous studies, we suspect species divergence in the level of dehydration (i.e., hyperosmolality) that triggers enhanced immune capabilities. 
    more » « less